The uniform convergence of nearest neighbor regression function estimators and their application in optimization
نویسنده
چکیده
A class of nonparametric regression function estimates generalizing the nearest neighbor estimate of Cover [ 121 is presented. Under various noise conditions, it is shown that the estimates are strongly uniformly consistent. The uniform convergence of the estimates can be exploited to design a simple random search algorithm for the global minimization of the regression function.
منابع مشابه
Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملEstimation of Density using Plotless Density Estimator Criteria in Arasbaran Forest
Sampling methods have a theoretical basis and should be operational in different forests; therefore selecting an appropriate sampling method is effective for accurate estimation of forest characteristics. The purpose of this study was to estimate the stand density (number per hectare) in Arasbaran forest using a variety of the plotless density estimators of the nearest neighbors sampling me...
متن کاملAlmost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples
Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...
متن کاملOn the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process
We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...
متن کاملA ug 2 00 7 Uniform - in - bandwidth functional limit laws for the increments of the normed sample quantile process ; application to nearest - neighbor estimates
In the present paper, we establish a functional limit law of the logarithm for the increments of the normed sample quantile process based upon a random sample of size n → ∞. We extend a limit law obtained by Deheuvels and Mason [9], showing that their results hold uniformly over the bandwidth h, restricted to vary in [h n , h n ], where {h′ n }n≥1 and {h′′ n}n≥1 are appropriate non-random seque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 24 شماره
صفحات -
تاریخ انتشار 1978